Lebanese American University
Department of Computer Science and Mathematics
MTH 201 - Calculus 3
EXAM 1 - Fall 2011

Instructors (circle one): Dr. Samer Habre
Dr. Rony Touma
Dr. May Hamdan
Dr. Leila Issa
Dr. Diane Nauffal

- This exam consists of 9 pages and 8 problems.
- Answer the questions below on the space provided. You can use the back pages for scratch or for more space for your answers. Please specify.
- Make sure you justify all your answers.

Question Number	Grade
1. 10%	
2. 12%	
3. 20%	
4. 12%	
5. 12%	
6. 10%	
7. 12%	
8. 12%	
TOTAL	

Problem 1: (10\%) Evaluate the following limits
(a) $\lim _{x \rightarrow \infty} \sin ^{-1}\left(\frac{x^{2}}{1+2 x^{2}}\right)$
(b) $\lim _{x \rightarrow \infty} \frac{\tan ^{-1}\left(e^{x}\right)}{e^{2 x}+x}$

Problem 2: (12\%)
(a) Simplify the following expression

$$
\ln (\cosh 6 x-\sinh 6 x)+\ln (\cosh 3 x+\sinh 3 x)
$$

(b) Evaluate

$$
\int \frac{\sinh (\ln x)}{x} d x
$$

Simplify your answer.

Problem 3: (20\%) Evaluate the following integrals
(a) $\int \tan ^{-1}(4 x) d x$
(b) $\int \frac{1}{x^{2}+4 x+5} d x$

Problem 4: (12\%) Evaluate the following improper integrals
(a) $\int_{2}^{4} \frac{1}{x^{2}-x-2} d x$
(b) $\int_{-\infty}^{\infty} \frac{1}{\left(e^{x}+e^{-x}\right)} d x$

Problem 5: (12\%) Determine the convergence or divergence of the following improper integrals. Justify your answers.
(a) $\int_{0}^{\infty} \frac{1}{\left(e^{x}+1\right)^{2}} d x$
(b) $\int_{1}^{\infty} \frac{\ln x}{e^{x}} d x$

Problem 6: (10\%) Show that

$$
\int_{1}^{\infty} \frac{\sin x+2}{x^{2}} d x
$$

converges, whereas

$$
\int_{1}^{\infty} \frac{\sin x+2}{x} d x
$$

diverges.

Problem 7: (12\%)
Find the values of p for which

$$
\int_{1}^{\infty} \frac{x}{\sqrt{x^{p}+1}} d x
$$

converges.
Justify your answer.

Problem 8: (12\%) Determine if the following sequences converge or diverge. Justify your answers.
(a) $a_{n}=\frac{n \sin \left((2 n-1) \frac{\pi}{2}\right)}{n+1}$
(b) $a_{n}=\left(1+\frac{2}{n}\right)^{n} \frac{1}{\sqrt[n]{n^{2}}}$

